Table of Contents

Department Head Welcome Message 6
Introduction 7
Graduate School Introduction 7
Department Introduction 7
EECS Faculty 8
Areas of Research 11
Biological Applications 13
Computer Systems and Architecture 13
High Performance and Scientific Computing 13
Intelligent Systems, Data Mining, and Machine Learning 13
Microelectronics, Microwave, and MEMS 14
Networked and Embedded Systems 14
Power Systems, Power Electronics, and Renewable Energy 14
Signal Processing, Systems, and Controls 14
Visual Computing and Image Processing 15
Purpose of this Handbook 15
EECS Graduate Program Administration 15
EECS Faculty/Staff and the Services They Provide: 15
Department and Program History 17
General Duties & Responsibilities of Faculty & Grad Students 19
University Computer Accounts 19
EECS Department Computer Accounts 19
Using the Web to Register with Career Services 19
Admission Requirements and Application Procedure 21
Standardized Testing 21
GRE/GMAT 21
English Proficiency 21
Admission Policies and Application Procedures 22
Financial Support 23
Departmental Assistantships 24
Graduate Teaching Assistantship (GTA) 24
Graduate Research Assistantship (GRA) 24
General Guidelines for Assistantships 25
Fellowships 25
Graduate Assistantship - System and Network Administrator 25
Other Financial Support 25
Research Activities 26
Responsible Conduct of Research (RCR) Institutional Plan 26
Registration and Advising 27
Registration for Classes Each Term 27
Part-Time Students 27
Computer Engineering Major, MS 28
Admission 28
Requirements 29
Thesis Option 29
Non-Thesis Courses-Only Option (30 hours) 29
Non-Thesis Project Option (30 hours) 29

Computer Engineering Major, PhD 29
Admission
Requirements

Computer Science Major, MS 31
Admission
Requirements
Thesis Option (30 hours)
Non-Thesis Project Option (30 hours)
Non-Thesis Courses Only Option (30 hours)

Computer Science Major, PhD 32
Admission
Requirements

Electrical Engineering Major, MS 34
Admission
Requirements
Thesis Option (30 hours)
Non-Thesis Project Option (30 hours)
Non-Thesis Courses Only Option (30 hours)

Electrical Engineering Major, PhD 35
Admission
Requirements

Energy Science and Engineering Concentration 37
Five-Year BS / MS Program 37
Admission
Course Approval
DARS
Senior Requesting Graduate Credit Petition
Applying to Graduate School

Dual MS-MBA 38
Curriculum for Dual MS-MBA Program – Computer Engineering 38
Curriculum for Dual MS-MBA Program – Computer Science 39
Curriculum for Dual MS-MBA Program – Electrical Engineering 40

Examinations 41

Standards, Problems, and Appeals 42
The Honor Code 42
Appeals 42

Pertinent Graduate Student Web Pages 43

Forms and Additional Resources 43
Graduate Admissions Forms 43
Graduation Forms 44
Master's Student Forms 44
Doctoral Student Forms 44

2016-17 EECS Graduate Handbook
Welcome to the Department of Electrical Engineering and Computer Science (EECS). We are a relatively new department, formed on July 1, 2007, with the merger of the Computer Science Department and the Electrical and Computer Engineering Department, but, in fact, are a department with a long distinguished history from these earlier incarnations.

This is an exciting time for us with many changes for the existing programs and new opportunities for expanding our research program. In March 2012, the department celebrated its move into its new state-of-the-art facility, the Min H. Kao Building. The new building brings almost all of departmental activities under one roof.

EECS offers three academic programs: Electrical Engineering; Computer Engineering; and Computer Science. Each program provides graduate degrees at both the MS and PhD levels. We are a diverse department with research interests spanning numerous fields, including: analog electronics, artificial intelligence, bioinformatics, embedded systems, high performance computing, power and energy, visualization and image processing, and wireless and sensor networks. Please explore our department web pages to learn more about the research activities. It is critical for you as a graduate student to identify your area of interest early in your studies to take advantage of the available research opportunities.

We hope you are excited as we are about new directions for our programs and will enjoy the educational and research opportunities the department offers.

Dr. Leon Tolbert
Department Head
Introduction

Graduate School Introduction
“In order to serve the mission and vision of the Graduate School and preserve the integrity of Graduate Programs at the University of Tennessee, Knoxville, information related to the process of graduate education in each department is to be provided for all graduate students.”

Department Introduction
The EECS Department offers graduate programs leading to the Master of Science and Doctor of Philosophy with majors in Computer Engineering (CpE), Computer Science (CS) or Electrical Engineering (EE). Areas of research in these program majors include: Software Engineering; Electronic Devices and Analog/Mixed-Signal Circuits; Power Electronics; Antenna Design, Microwave Circuits and Micro-Electro-Mechanical Systems (MEMs); Energy and Power Infrastructure; High Performance Computing; Distributed Systems and Fault Tolerance; Networking; Computational Science and Engineering; Data Mining; Data Analytics and Visualization; Computer Graphics; Graphical User Interfaces; Information Systems; Signal and Image Processing; Intelligent Systems and Machine Learning; and Bioinformatics, Systems Biology and Biologically-Inspired Computing.

As a graduate student of the University of Tennessee, Knoxville and while pursuing the MS and/or PhD degree in the Computer Engineering, Computer Science or Electrical Engineering programs, you are considered an educated, responsible adult pursuing the frontiers of these expanding horizons. Look for opportunities beyond the required course work and take advantage of the learning opportunities we offer. Participate in professional groups and, if possible, technical conferences. In graduate school you have a relationship with faculty that is closer than before, and different - more like a colleague in learning and research. Your program will be more individualized, deeper, and less hurried. There will be chances to further develop your individual talents, be they basic research, analysis, synthesis, design, development, technical writing, or oral presentations. Research on the very frontiers of technology will be a major part of your program as you prepare a thesis or dissertation. There is also financial support available for graduate students through fellowships, teaching assistantships, and/or research assistantships.

The EECS Department along with the College of Business Administration also offers a dual MS-MBA degree program. Students must be admitted by both the EECS Department and the College of Business Administration. The majors within the EECS Department for which the dual MS-MBA degree program is available are Computer Engineering (CpE) and Electrical Engineering (EE).

This handbook is intended to help you gain as many benefits as possible from your studies and to make the most of the opportunities we have to offer. It contains information for how the Department and the Graduate School function, the range and selection of courses available, and what to do should difficult situations arise. Please note that this handbook is purely advisory and that the material it contains is not intended to be a comprehensive statement of University policy (always consult the University’s Graduate Catalog for procedures and requirements).

We know that it will become apparent to you that the staff, faculty, and you the student are all here for the same purpose: a successful learning experience leading to graduation with a MS or PhD degree that will foster a successful career in advanced Computer Science, Computer Engineering or Electrical Engineering. Your future begins today and we know that you also will feel the excitement, pride and deep satisfaction that will be yours in the EECS graduate program.
EECS Faculty

https://www.eecs.utk.edu/people/faculty/

Dr. Mongi A. Abidi – Image Processing, Robotics, Artificial Intelligence
Dr. Micah Beck – Parallel and Distributed Computing, Automatic Program Parallelization, Program Development Tools, Distributed and Fault Tolerant Systems
Dr. Michael Berry – Scientific Computing, Parallel Numerical Algorithms, Information Retrieval, Data Mining, Bioinformatics, Computational Science and Performance Evaluation, Visual Analytics
Dr. Benjamin J. Blalock – Analog/Mixed-Signal Integrated Circuit Design, SOI CMOS Analog/Mixed-Signal IC Design, Ultra Low Voltage CMOS IC Design, Programmable Analog Circuits
Dr. Qing "Charles" Cao – Networked Embedded Systems
Dr. Daniel Costinett (not pictured) - Power Electronics, Soft Switching Converters, Electric Vehicles
Dr. Judy Day – Dynamical systems, Acute Inflammation/Immunology, Model Predictive Control, Translational Medicine, Transient Dynamics
Dr. Mark Dean - Advanced Computer Architectures - cognitive system devices, structures, architectures and learning models, non-Von Neumann data-centric computer architectures and programming models; Big Data Systems - deep Q/A systems, evidence based delivery of information and services; Computational Science - improved utilization of high performance computing to support scientific study and exploration
Dr. Seddik M. Djouadi – Systems and Control, Power Control in Wireless Networks, Stochastic Resonance
Dr. Jack Dongarra – Scientific Computing, Numerical Linear Algebra, Parallel Processing, Software Tools, Mathematical Software and Software Repositories
Dr. Aly Fathy – Electromagnetics, Antennas, Microwave Circuits, Propagation, UWB Systems
Dr. Wei Gao – Wireless networking, mobile systems, cyber-physical systems, social networks, pervasive and mobile computing.
Dr. Jens Gregor – Pattern and Image Analysis, Computed Imaging
Dr. Gong Gu – Electronic Devices based on Emerging Materials in the Interdisciplinary Junction of Physics, Materials Science, Electrical Engineering
Dr. Jian Huang – Visualization and Computer Graphics, Large Scale Distributed Visualization, Remote Visualization and Real Time Graphics
Dr. Syed Islam – Associate Department Head, Electronics
Dr. Michael Jantz - Virtual Machines, Operating Systems, Compilers, Program Optimization, Performance and Power Efficiency
Dr. Michael A. Langston – Combinatorial Algorithms, Computational Biology, High Performance Computing
Dr. Fangxing "Fran" Li – Power Systems Engineering and Economics
Dr. Husheng Li – Wireless Communications and Networks, Statistical Signal Processing, Information Theory, Theory of Random Matrices
Dr. Yilu Liu – Power Systems and Smart Grids
Dr. Bruce Maclellan – Neural Networks and Connectionism, Theory of Knowledge, Massively Parallel Analog Computation, Emergent Computation
Dr. Donatello Materassi – Stochastic Systems, System Identification and Modeling, Graphical Models, Cybernetics
Dr. Audris Mockus – Software Engineering, Data Science, Digital Archaeology
Dr. Lynne E. Parker – Associate Department Head, Distributed Mobile Robotics, Human-Robot Interaction, Distributed Intelligence, Sensor Networks, Machine Learning, Embedded Systems, Multi-Agent Systems
Dr. Gregory Peterson – Computer Engineering, Digital Systems
Dr. James Plank – Fault-Tolerance, Erasure Codes, Storage Systems, Distributed Computing, Operating Systems
Dr. Hector Pulgar – Power System Dynamics and Stability, Power System Operation and Control, Renewable Energy Integration
Dr. Hairong Qi – Computer Engineering, Image Processing, Sensor Networks
Dr. Max Schuchard - Computer Security and Privacy, Crypto-Currencies
Dr. Jinyuan "Stella" Sun – Security and Privacy in Wired/Wireless Networks and Critical Application Systems
Dr. Kai Sun – Power system stability, control and optimization
Dr. Chao Tian – Data Storage Systems, Information Theory, Data Communication and Networks, Signal Processing
Dr. Leon Tolbert – Power Electronics, Power Systems
Dr. Kevin Tomsovic – CTI Professor and Department Head, Power Systems, Optimization
Dr. Bradley Vander Zanden – Graphical Programming Environments, Programming Languages, Constraint Solving, Graphical User Interfaces
Dr. Michael D. Vose – Cross-Disciplinary Activities; Algorithms, Simulation, Theory
Dr. Fei "Fred" Wang – Power Electronics, Power Systems, Motor Drives, Electric Machines
Dr. Jayne Wu – Microelectronics, Microfluidics, MEM
Areas of Research

The University of Tennessee's flagship campus in Knoxville boasts a vigorous research agenda engaging scholars and students with expertise in issues vital to local and global interests. The Knoxville campus is the hub of a vibrant research community that includes Oak Ridge National Laboratory and other University of Tennessee System campuses and institutes. EECS engineers and scientists are actively engaged in the following areas of research:

<table>
<thead>
<tr>
<th>Area of Strength</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGICAL APPLICATIONS</td>
<td>Berry, Day, Islam, Langston, McFarlane, Peterson, Vose, Wu</td>
</tr>
<tr>
<td>COMPUTER SYSTEMS AND ARCHITECTURE</td>
<td>Beck, Dean, Jantz, Mockus, Peterson, Plank, Rose, Vander Zanden</td>
</tr>
<tr>
<td>HIGH PERFORMANCE AND SCIENTIFIC COMPUTING</td>
<td>Berry, Dean, Dongarra, Gregor, Huang, Langston, Vose</td>
</tr>
<tr>
<td>INTELLIGENT SYSTEMS, DATA MINING AND MACHINE LEARNING</td>
<td>Berry, Gregor, MacLennan, Mockus, Parker, Qi, Vose</td>
</tr>
<tr>
<td>MICROELECTRONICS, MICROWAVE AND MEMS</td>
<td>Blalock, Fathy, Gu, Islam, McFarlane, Wu</td>
</tr>
<tr>
<td>NETWORKED AND EMBEDDED SYSTEMS AND CYBERSECURITY</td>
<td>Beck, Cao, Djouadi, W. Gao, H. Li, Parker, Qi, Schuchard, J. Sun, Tian</td>
</tr>
<tr>
<td>POWER SYSTEMS, POWER ELECTRONICS AND RENEWABLE ENERGY</td>
<td>Costinett, F. Li, Liu, Pulgar, K. Sun, Tolbert, Tomsovic, F. Wang</td>
</tr>
<tr>
<td>SIGNAL PROCESSING, SYSTEMS AND CONTROLS</td>
<td>Djouadi, H.Li, Materassi, Qi</td>
</tr>
<tr>
<td>VISUAL COMPUTING AND IMAGE PROCESSING</td>
<td>Abidi, Gregor, Huang, Qi, Vander Zanden, Vose</td>
</tr>
</tbody>
</table>
Biological Applications
Acute Inflammation/Immunology, Bioelectronics, Bioinformatics, Bio-Medical Devices, Biotechnology and Bio-Sensor Design, Computational and Systems Biology, Dynamical Systems, Model Predictive Control, Transient Dynamics, Translational Medicine

Affiliated Labs, Centers, Institutes
- Laboratory for Information Technologies, National Institute for Mathematical and Biological Synthesis (NIMBioS)

Affiliated Faculty
- Tenured/Tenure-Track: Michael Berry, Judy Day, Syed Islam, Michael Langston, Nicole McFarlane, Gregory Peterson, Michael Vose, Jayne Wu

Computer Systems and Architecture
Compilers, Distributed and Fault Tolerant Systems, Operating Systems, Power-Aware Computer Systems and Architectures, Program Development Tools, Storage

Affiliated Labs, Centers, Institutes
- Logistical Computing and Internetworking Laboratory (LoCI), Power-Aware Computer Systems Laboratory (PACS)

Affiliated Faculty
- Tenured/Tenure-Track: Micah Beck, Gregory Peterson, James Plank, Brad Vander Zanden, Xiaorui “Ray” Wang

High Performance and Scientific Computing
Distributed Computing, Mathematical Software and Software Repositories, Numerical Linear Algebra, Parallel Processing, Software Tools

Affiliated Labs, Centers, Institutes
- Innovative Computing Laboratory (ICL), Joint Institute for Computational Sciences (JICS)

Affiliated Faculty
- Tenured/Tenure-Track: Michael Berry, Jack Dongarra, Jens Gregor, Jian Huang, Michael Langston, Michael Vose
 Adjunct, Research, and ORNL Joint Faculty: Scott Klasky, Richard Mills

Intelligent Systems, Data Mining, and Machine Learning
Artificial Intelligence, Distributed Intelligence, Data Mining, Deep Machine Learning, Emergent Computation, Genetic Algorithms, Neural Networks and Connectionism, Pattern Recognition, Robotics, Visual Analytics

Affiliated Labs, Centers, Institutes
- Emergent Computation Project; Imaging, Robotics, and Intelligent Systems (IRIS); Laboratory for Information Technologies; Machine Intelligence Lab & Networking Research Group

Affiliated Faculty
Microelectronics, Microwave, and MEMS

Affiliated Labs, Centers, Institutes
- Analog VLSI and Devices Laboratory, Antennas and Microwave Systems, Integrated Circuits and Systems Laboratory (ICAS)

Affiliated Faculty
- Tenured/Tenure-Track: Benjamin Blalock, Aly Fathy, Gong Gu, Syed Islam, Nicole McFarlane, Jayne Wu
 Adjunct, Research, and ORNL Joint Faculty: Charles Britton, Ethan Farquhar

Networked and Embedded Systems

Affiliated Labs, Centers, Institutes
- Advanced Imaging and Collaborative Information Processing (AICIP), Distributed Intelligence Laboratory, Power-Aware Computer Systems Laboratory (PACS)

Affiliated Faculty
- Tenured/Tenure-Track: Micah Beck, Qing “Charles” Cao, Seddik Djouadi, Husheng Li, Lynne Parker, Hairong Qi, Jinyuan “Stella” Sun
 Adjunct, Research, and ORNL Joint Faculty: Benjamin Arazi, Stacy Prowell, Xiaorui “Ray” Wang

Power Systems, Power Electronics, and Renewable Energy
Distributed Energy Conversion and Control, Electric Machines, Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs), Packaging and High Temperature Power Electronics, Plug-in Hybrid Electric Vehicles (PHEVs), Power Quality and Active Power Filters, Power Systems Engineering and Economics, Motor Drives, Smart Grid Technologies

Affiliated Labs, Centers, Institutes
- Center for Ultra-wide-area Resilient Electric Energy Transmission Networks (CURENT); Center for Power Systems, Power Electronics, and Energy (Power Engineering Laboratory); Power Information Technology Laboratory

Affiliated Faculty
- Tenured/Tenure-Track: Fangxing “Fran” Li, Yilu Liu, Leon Tolbert, Kevin Tomsovic, Fei “Fred” Wang
 Adjunct, Research, and ORNL Joint Faculty: James Nutaro, Burak Ozpineci

Signal Processing, Systems, and Controls
Affiliated Labs, Centers, Institutes

Affiliated Faculty
- **Tenured/Tenure-Track**: Seddik Djouadi, Paul Crilly, Husheng Li

Visual Computing and Image Processing
3D Rendering, Computed Imaging, Computer Graphics, Display of Biomedical and Scientific Data, Graphical Programming Environments, Graphical User Interfaces, Interactive Simulation, Large Scale Distributed Visualization, Remote Visualization, Visualization

Affiliated Labs, Centers, Institutes
- Advanced Imaging and Collaborative Information Processing (AICIP); Imaging, Robotics, and Intelligent Systems (IRIS); Joint Institute for Computational Sciences (JICS); See Laboratory (SeeLab)

Affiliated Faculty
- **Tenured/Tenure-Track**: Mongi Abidi, Jens Gregor, Jian Huang, Hairong Qi, Brad Vander Zanden, Michael Vose

Purpose of this Handbook
Graduate students are expected to be aware of and satisfy all regulations governing their work and study at the university. Students should be directed to the Graduate Catalog (http://catalog.utk.edu/index.php), to the Hilltopics student handbook (http://hilltopics.utk.edu) and to the publications on the Appeals Procedure and the Graduate Assistant Handbook available on the Graduate School website (http://gradschool.utk.edu/documents/2016/02/student-appeals-procedures.pdf)

EECS Graduate Program Administration

Dr. Jens Gregor
2016-17 Graduate Program Director
http://www.eecs.utk.edu/people/faculty/jgregor/

Dr. Kevin Tomsovic
2016-17 Graduate Committee Chair
http://www.eecs.utk.edu/people/faculty/tomsovic/

2016-17 Graduate Admissions Committee
https://utworks.tennessee.edu/engineering/eecs/portal/Wiki/Committee%20Assignments.aspx

Dana L. Bryson
2016-17 EECS Graduate School Contact/Support Information
gradinfo@eecs.utk.edu

EECS Faculty/Staff and the Services They Provide:
The main Business Office of the department is located in the Min H. Kao Electrical Engineering and Computer Science Building, Suite 401, and serves as the focal point for undergraduate and
The staff in this office has detailed knowledge of the day-to-day operations of the department and will be your initial point of contact if any difficulties arise. They provide office support for the faculty and help facilitate the graduate and undergraduate programs.

The faculty (who teach the classes and supervise graduate student research) and the staff (who provide the supporting services) are whom you might consider to be the permanent residents of the Min H. Kao Building. A semi-permanent population of graduate students, many of whom you will encounter in labs and occasionally in classes, also have places of work in the Min H. Kao Building and the Science and Engineering Research Facility (SERF).

You will receive most of your instruction from the department’s faculty. They are reasonable people and very interested in helping you, especially if they sense that you are a capable and serious student and doing all you can to help yourself. In addition to teaching responsibilities, the faculty is involved in research and the oversight of graduate student research programs. The specific interests of the faculty, listed above, can help you determine where to go for further information on a particular aspect of the fields of Computer Engineering (CpE), Computer Science (CS) or Electrical Engineering (EE).

The staff is responsible for the smooth, orderly, day-to-day operation of the department. The staff in main business office maintains advising files on all graduate students. These files contain semester grade reports, an academic history, other academic records, and comments from advisors where appropriate. Most forms and student information sheets are available in the main business office and can be returned there after completed and the appropriate signatures have been obtained. The staff in the business office is frequently in contact with the faculty and can act as a good communications link between you and them, arranging contacts convenient to both. The staff is also the principal source of information of a general nature concerning the department and they usually find themselves taking care of personal items that have been found, misplaced or lost in or near the Min H. Kao Building.

Another important component of the staff can be found in the Technical Services. The EECS IT staff is located in the Min H. Kao Building, Suite 423, they make sure that all the laboratory and computer equipment is in working order, oversee use of the small machine shop in which students are able to build up the hardware needed for class projects, and operate a parts store from which you can purchase most of the electronic components needed for project assignments.
Department and Program History
The Department of Electrical Engineering and Computer Science was formed in 2007 out of a merger between the Computer Science and Electrical and Computer Engineering departments.

Though EECS is a relatively new, the long-established departments from which it was created have given it a rich heritage that can be traced back more than 120 years.

The electrical engineering was first added to the university’s curriculum in the late 19th century, around the same time incandescent lighting started illuminating campus. Dr. Charles Perkins, an associate professor of physics and electrical engineering, was the only faculty member teaching electrical engineering courses to a handful of students. In 1892, the university had its first electrical engineering bachelor’s student graduate, Sidney Albert Beyland.

By 1896, the program was gaining steam with 85 students pursuing electrical engineering degrees. The influx of students and the addition of new equipment expanded the university’s electrical laboratory to its limits in Science Hall. The addition of Estabrook Hall to campus in 1899 made room for a new power plant in addition to experimental labs.

In 1907, electrical engineering became its own department. Perkins, who still served as electrical engineering’s only faculty member assumed the position of department head. He would also teach the department’s first graduate course offerings in 1913.

In 1942, the United States’ entrance into World War II caused a significant drop in the number of students studying electrical engineering at UT. During the early years of the war, the electrical engineering department was instrumental in training members of the U.S. Army Air Corps. Following the war student numbers skyrocketed with veterans returning to earn degrees under the G.I. Bill. More than 300 undergraduates were enrolled in electrical engineering courses by 1947.

In the 1950s computers began appearing on college and university campuses across the country. Computers became a vital tool in research, speeding up the process of calculating complex equations and streamlining the storage of vast amounts of data.

Electrical engineering faculty members were at the forefront of the university’s new interest in computing science. In 1958, Department Head Paul Cromwell found a way to bring the first digital computer to campus – a Librascope General Purpose 30-bit. As computers became more prevalent, there became an increased in demand for courses in the field of computer science. At the time, however, computer science was still considered a field under electrical engineering and mathematics. Courses in programming and numerical methods were offered by the Mathematics Department, while courses on computers continued to be taught in the electrical engineering department.
In 1972, the department of Computer Science was created to offer a master’s degree within the College of Liberal Arts. Approximately 150 students were enrolled in the master’s program in the fall of 1972. In 1974, the Tennessee Higher Educational Commission approved the proposal for the addition of an undergraduate degree program to be added to the department, a Bachelor’s of Arts in Computer Science. The same year, Robert Gregory became the first department head for computer science.

During the late 1980s, UT's Computer Science department gained national recognition in networking and supercomputing. The first appearance of the PhD program in computer science was in the 1986-87 catalog. Professor Michael Thomason directed the first Ph.D. that was awarded to Robert England in 1989.

Throughout the next two decades, the Computer Science Department moved into the top ranks of the university’s departments in contract and grant funding per full-time equivalent faculty, earning two multi-year NSF Infrastructure Grants to support its work in parallel computation on multiple processors and grids of shared resources.

On July 1, 2007, the Computer Science Department officially merged with the Electrical and Computer Engineering Department becoming the Electrical Engineering and Computer Science Department.

In May 2007, construction began on a new building to house the newly merged department. This building was made possible through a $12.5 million gift from alumnus Min H. Kao, CEO and chairman of Garmin International. The six-floor, 150,000-square foot building became the home of the department in fall 2011.
General Duties & Responsibilities of Faculty & Grad Students

- Emphasis on full commitment to the program and participation in professional activities
- Repeated emphasis on the absolute necessity of satisfying university regulations in a timely fashion

Hilltopics Student Handbook (http://hilltopics.utk.edu) – Each year the University of Tennessee produces the Hilltopics Student Handbook. Inside Hilltopics students will find general campus policies and procedures, standards of conduct, academic policies and procedures and information about student support, services and organizations.

Some Things to Do Your First Semester in Graduate School:
- Obtain an advisor (Go to the Min H. Kao Building, Suite 401, to obtain a temporary advisor)
- Obtain a UNIX account (See the university and departmental computer account sections below)
- Acquaint yourself with departmental requirements and course sequencing
- Register for next semester by phone (974-2101) or with One Stop Express Student Services
- Carry your ID at all times
- Pick up a student directory (usually available in October at the University Center)

Read the Graduate School publications and carefully read the Graduate Catalog’s introductions to the Graduate School and the EECS Department for procedures and requirement.

University Computer Accounts
In some courses you may be specifically directed to use one of the many computer systems available for student use on campus. Students can obtain their own personal account, known as a UNIX e-mail account, which will remain in effect as long as the student is registered at the University. To register for an account you need to contact OIT (Office of Information Technology).

EECS Department Computer Accounts
Many of the EECS computing resources are restricted to departmental faculty, staff and students. This restriction depends on EECS department computer accounts and should not be confused with University computer accounts.

Accounts for most students are created from class enrollment data. Accordingly, account information may be distributed during class at the beginning of each semester. Otherwise, students should see EECS IT Support in 423 Min H. Kao to obtain an account.

Using the Web to Register with Career Services
Students can register with the Center for Career Development (http://career.utk.edu/) for all things career-related. They provide career counseling, interviewing and resume advice, and updated information on career fairs and workshops. By registering with their HIRE-A-VOL system, you will gain access to job postings and other employment opportunities that include full/part time positions and internships. Students are encouraged to use Career Services and the many features they offer.
Admission Requirements and Application Procedure

The Graduate School - The University of Tennessee

The following are the general requirements for admission to the Graduate School at the University of Tennessee, Knoxville. Many programs also require departmental applications and have additional departmental requirements. Please contact your department directly for the specific program requirements.

• Applicants must have obtained a bachelor’s degree from a college or university accredited by the appropriate regional accrediting agency. A non-U.S. degree must be equivalent to a bachelor’s degree from the United States and must be accredited by its regional or national accreditation agency.

• United States degree holders must have earned a minimum of 2.7 out of a possible 4.0 GPA or a minimum of 3.0 during the senior year of undergraduate study. If you have completed previous graduate coursework, you must have earned a minimum of 3.0 out of a possible 4.0 GPA.

• Applicants with non-U.S. degrees must have earned a minimum of 3.0 on a 4.0 scale or other equivalent to a ‘B’ average. If you have completed previous graduate coursework, you must have earned a minimum of 3.3 out of a possible 4.0 GPA or other equivalent to a ‘B+’ average.

• Applicants may require standardized test scores, depending upon their program requirements. Applicants whose native language is not English must submit TOEFL or IELTS test scores in order to be fully admitted. See below for more information on standardized testing.

For additional information, refer to the statement on Admission Requirements and Application Procedures in the Graduate Catalog.

Standardized Testing

Depending upon your desired program, and native language status, you may be required to submit standardized test scores with your application.

GRE/GMAT

The program to which you are applying may require test scores, such as the GRE or the GMAT. Please check with your desired program to see if they require any standardized test scores. Registration information for the GRE is available at Educational Testing Service (ETS). Registration for the GMAT is available at mba.com. There is no minimum score for the GRE or the GMAT, but you may wish to check with your desired program to see if your score is competitive.

After taking your exam, have your scores sent to the University of Tennessee, Knoxville. For the GRE, you will be asked for an institution code (1843 for UT). For the GMAT, simply select UT as a recipient.

English-Proficiency
All non-native speakers of English are required to take either the TOEFL (Test of English as a Foreign Language) or the International English Language Testing System (IELTS). Find out how to register for the TOEFL or the IELTS.

To be fully admitted, applicants must submit a minimum score of 550 on the paper-based TOEFL; 80 on the TOEFL iBT or 6.5 on the IELTS. Applicants may be eligible for English Proficiency Conditional Admission.

After taking your exam, have your scores sent to the University of Tennessee, Knoxville. If you have taken the TOEFL, please use the institution code of 1843. For the IELTS, you will need to provide the mailing address for the Office of Graduate Admissions: 201 Student Services Bldg. Knoxville, TN 37996-0221

Admission Policies and Application Procedures

Anyone with a bachelor's degree from a regionally accredited institution or foreign equivalent who wishes to take courses for graduate credit, whether or not the person desires to become a candidate for a degree, must submit a formal online application for admission to graduate study or apply for transient status. No action is taken until a file is complete. An applicant will be notified once action has been taken by the department/program and the Office of Graduate Admissions. Applicants should check their status online.

To apply for admission, the following materials must be submitted to Graduate Admissions through the on-line application submission process:

- The completed online Graduate Application for Admission (http://graduateadmissions.utk.edu/).
- A $60 non-refundable application fee - paid by credit card or electronic check.
- One unofficial transcript from all colleges and universities attended submitted on-line at the time of application to the Graduate School. An unofficial transcript or university record is defined as a scanned version of the transcript or university record that would be sent by mail as an official transcript. The document must contain the institution name, course names, grade information, terms of attendance and any academic notations. Transcripts or academic records uploaded from the institution's student information system portal will not be accepted. Transcripts or university records that are not in the English language must be submitted in both the original language and a certified English translation.
- The submission of official transcripts, degree certificates, and English translations to the Graduate Admissions Office is required following the offer of admission. In order for transcripts to be considered official, they must be sent directly from the institution. The Graduate School will reserve the right to revoke admission to a student if any unofficial or official documents are found to be fraudulent following review and comparison. Registration is prohibited after the first semester of enrollment until students have submitted the official copy of transcripts, including any degree certificates or degree confirmations, from all institutions previously attended.
- Official scores from Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS) if native language is not English (refer to section on English Certification).

Additional departmental/program requirements may include but are not limited to:
• Departmental application.
• Reference letters or rating forms.
• Scores from the Graduate Record Examination (GRE) or Graduate Management Admission Test (GMAT).

To register for the IELTS, contact IELTS at http://www.ielts.org.
To register for the GMAT, go to the GMAT website at http://www.mba.com/.
To register for the GRE and TOEFL, contact Educational Testing Service Princeton, New Jersey 08450 http://www.ets.org

The ETS UT code is 1843. Test results reach the university in approximately three weeks.

All documents submitted become the property of the university and will not be returned. For international graduate student application procedures, see Admission of International Students.

Financial Support

• Graduate assistantships are the primary source of funding for graduate students at UT and are offered by academic departments and administrative offices of the university. An assistantship is a financial award to a graduate student for part-time work in teaching, administration, or research while pursuing an advanced degree. Appointments are normally on a one-fourth to one-half time basis, usually requiring 10 – 20 hours of service per week. The annual stipend is payable in either nine or twelve monthly installments. In addition to the stipend, Graduate Teaching Assistants (GTA), Graduate Teaching Associates (GTAssoc), Graduate Assistants (GA), and Graduate Research Assistants (GRA), with appointments on a one-fourth time basis or higher, are entitled to a waiver of maintenance fees and tuition for the period of appointment in accordance with university policy. These appointments also include a benefit of health insurance for the student. While there is no central point of contact for information on GA positions in administrative offices around the university, some positions are filled periodically in college advising centers, admission offices, residence halls, and other service offices.
• Fellowships: Fellowships are awards that typically require no service. Most fellowships are awarded on the basis of academic merit and potential for scholarship. (descriptions on the Graduate School website)
• Loans: administered by the Financial Aid office
• Employment: on-campus and off-campus; statements clarifying the number of hours a graduate student may work in on-campus jobs/assistantships and the departmental attitude toward outside employment
• Support for travel (policies and procedures) available from department/program, college, and university’s Graduate Student Travel Fund administered by the Graduate Student Senate (GSS).
A topic dear to all is financial support, and there is much more available for graduate students than for undergraduate students. Support for our graduate students comes in many forms, such as assistantships in the department as well as support from outside the department.

Departmental Assistantships

Graduate Teaching Assistantship (GTA)

One form of assistantship in the department is the Graduate Teaching Assistantship (GTA). Each GTA position currently pays tuition plus a monthly stipend. A Bachelor of Science in Computer Engineering, Computer Science or Electrical Engineering with at least a 3.5 GPA average is required. These are highly competitive, prestigious positions of responsibility, with office space, and facilities are provided accordingly. The department has approximately 75 graduate teaching assistantships that it awards each year. About one half of these are 20 hours/week assistantships (referred to as ½-time GTAs) and about one half of these are 10 hours/week assistantships (referred to as ¼-time GTAs). These assistantships are generally used as a recruiting tool to bring in outstanding prospective graduate students from around the world to the UT EECS department. Almost all of the ¼-time GTAs also hold a ¼-time GRA (Graduate Research Assistantship) and work in conjunction with a faculty member. The GTAs generally help with the laboratories associated with undergraduate courses in Computer Engineering, Computer Science or Electrical Engineering. They also assist in grading homework and debugging computer programs. The GTAs should take course loads prescribed under “Policy for the Administration of Graduate Assistantships” in the Graduate catalog, and engage only in the assistantship and their degree program. Students should find a graduate advisor with similar research interests to act as a sponsor for their application to be a GTA. Applications are available in 401 Min H. Kao.

The Graduate School requires the ACTFL OPIc Test for GTAs whose first language is not English. Students who score less than “Advanced High” (AH) should retake these tests every semester until the score is AH or better. Students with scores lower than AH may have their GTA revoked and/or their activities regulated based on the test results. For complete details see “Policy for the Administration of Graduate Assistantships” in the Graduate School section of the Graduate Catalog. (The SPEAK® Testing Program was instituted at the University of Tennessee, Knoxville in 1983 as a response to a mandate from the Tennessee General Assembly requiring that all instructional personnel be proficient in spoken English. The program based the required levels of oral proficiency upon the ILR/ETS/ACTFL rating scale. The SPEAK® Test, created by ETS, has been retired, and the testing program now uses the ACTFL OPIc. The ITA Testing Program establishes the oral proficiency for teaching assistants and is located administratively in the Graduate School. All prospective teaching assistants or associates whose native language is not English are required to take and pass the OPIc before they can assume teaching responsibilities.) Please see the International Teaching Assistant (ITA) Testing Program webpage (http://gradschool.utk.edu/graduate-student-life/ita-testing-program/) for further information regarding testing dates/locations and other frequently asked questions.)

Graduate Research Assistantship (GRA)

Another form of assistantship in the Department is the Graduate Research Assistantship (GRA). At present, there are approximately 100 GRAs in the EECS Department. A GRA is paid through the University by a sponsor (government agency or company) to do research on a project. GRAs are chosen by the faculty principal investigator as positions become available. They are generally half-time appointments with paid tuition and fees, plus a monthly stipend appropriate to the student’s level and the research project. A GRA is especially useful in the latter part of your program since the involved research usually provides an excellent thesis or dissertation topic.
and computer and laboratory facilities to conduct the research. Students should contact faculty who have similar research interests to inquire about the availability of these GRAs.

General Guidelines for Assistantships

Note that among the procedures and regulations of the Graduate School are some regarding assistantships. For example, the Graduate School requires that the course load of a half-time assistant (GA or GRA) be 6 to 11 hours. The Graduate School limits the time for holding an assistantship to 3 years for a MS student and 5 years for a PhD student. The Graduate School requires the ACTFL OPIc Test for GTAs whose first language is not English, and regulates their activities based on the results. For complete details see “Policy for the Administration of Graduate Assistantships” in the Graduate Catalog.

Fellowships

The EECS Department provides several fellowships and assistantships for graduate students.

The Bodenheimer Fellowship provides $10,000 per year per person to five superior EECS graduate students. This fellowship is combined with a graduate teaching assistantship (GTA) or graduate research assistantship (GRA) to bring the total value to more than $30,000. These fellowships were established by alumnus Michael Crabtree in honor of Professor Robert E. Bodenheimer who taught in the department for almost forty years prior to his retirement.

The Min Kao Fellowship also provides $10,000 per year per person and a tuition waiver to five superior EECS graduate students. This fellowship was established after UTK EECS alumnus Dr. Min Kao, CEO of Garmin International, Inc., donated $5 million to the department to establish fellowships, scholarships, and professorships.

The Ron Nutt Family Fellowship provides funding to an individual interested in studying medical imaging and data processing. Dr. Nutt is an alumnus of the department and a founder of CTI Molecular Imaging, Inc.

The College of Engineering Fellowship provides $10,000 per year per person to several students in the college. These are highly competitive fellowships, but a few EECS students receive these each year. Students should find a faculty sponsor to nominate them for one of these fellowships.

Other fellowships include the Dr. Vaughn Blalock Graduate Memorial Award, the Chancellor’s Honors Award, the ESPN Fellowship, the National Science Foundation (NSF) Award, the University of Tennessee, Graduate Fellowship Award and the Department Excellence Awards.

Graduate Assistantship - System and Network Administrator

We have a sizable support staff managing our labs and handling the UNIX system administration and other matters. We usually have four to six graduate assistants doing system admin work. Students who have good UNIX system/network admin skills can inquire about the availability of such GA positions. Interviews are usually necessary for these positions. The Division of Information Infrastructure (DII), formerly called the University of Tennessee Computing Center, has a variety of systems and network groups, many of which have GA positions. Obtaining a position with DII requires interviews and cannot be done remotely.

Other Financial Support

http://gradschool.utk.edu/graduate-student-life/costs-funding/
Other forms of support besides departmental assistantships include: fellowships outside the department, jobs on and off campus and loans. Our students have often found jobs at the Computing Center and Computer Store, as well as other academic departments (such as Biology, the Engineering Fundamentals Division, Psychology, Human Ecology and the Veterinary School) who need students with skills in computer engineering, computer science or electrical engineering in their research. The Graduate School has competitively awarded travel grants which provide partial reimbursement of expenses for graduate students to make scholarly presentations at professional meetings. *(However, during the present budget crunch, there will likely be no funds available from the Graduate School for travel).* Application deadlines for each term are in the preceding term. Sometimes research contracts are also able to help fund graduate research assistant’s travel to professional meetings. Students should work with their faculty advisor to write and submit papers for conferences. Most of the faculty will try to send students to domestic conferences if research contracts have sufficient funding.

The Graduate School identifies sources of support in its annual publication, “GradSources.” For computer science and engineering, the National Science Foundation and the department of Defense are particularly good sources. There are about fifteen different national-level guides on support for graduate students available for use in the reference room of the main Library. Notices of financial aid received by the department are posted for you on the various bulletin boards in Min H. Kao.

Most importantly, you should be active and early in pursuing the many sources of support that are open.

Research Activities

The Computer Engineering (CpE), Computer Science (CS) and Electrical Engineering (EE) graduate programs contain considerable research for the purpose of providing a genuine experience in real frontier research in the area of the student’s interest. The EECS Department has more than $10 million worth of research contracts, making it very active in research and one of the most active at UTK. Graduate students should realize that the foremost reason for having this research is for their experience. Matching students to research is done carefully to meet our responsibilities to both the student and the sponsoring agency, who expects completely professional results. Also, this research is obtained in a competitive environment and we must deliver quality work to maintain our excellent position. You should invest some time, early in your program, in talking with faculty and other graduate students about their research. In some cases they will have publications or seminars from which you can learn. To become part of a research project you generally must be hired by the faculty member who is the Principal Investigator on that project. Openings occur throughout the year as projects start or students leave them.

Responsible Conduct of Research (RCR) Institutional Plan

The University of Tennessee, Knoxville, takes its obligation to implement and support best practices in research seriously. The University of Tennessee’s Office of Research provides guidance and support for the implementation of training for Responsible Conduct of Research (RCR). In response to Section 7009 of the *America Creating Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science (COMPETES) Act* (42 U.S.C.
18620–1) this RCR Institutional Plan has been developed to provide appropriate training and oversight in the responsible and ethical conduct of research. Responsible and ethical conduct of research is critical for excellence, as well as public trust, in science and engineering. Consequently, education in RCR is considered essential in the preparation of future scientists and engineers. All EECS graduate students are required to complete RCR online training. Information on guidelines and requirements, training programs, forms, contact information and additional resources for this program can be obtained through the Office of Research (http://research.utk.edu/compliance/rcr-institutional-plan/).

Registration and Advising

Registration for Classes Each Term

To register for classes each term, you will want to see the Graduate School for a “Timetable of Classes” and other instructions. This Timetable covers all undergraduate and graduate procedures and classes. It gives detailed instruction on how to register for each situation you might be in, as well as the times and locations of all classes. The normal procedure is to select classes via Web or telephone and pay by mail. These steps must be done well in advance, and if you are too late you must follow other procedures involving going to various campus fee offices.

Caution: be sure to register for each course for graduate credit, even if it has an undergraduate number. Only in this way can you count the course toward a graduate degree. The only courses that might be in this category in your program are math courses or some senior-level EECS courses.

Part-Time Students

It is practical to earn a Master’s degree as a part-time student if the student already has an acceptable BS in Computer Engineering, Computer Science or Electrical Engineering. Read carefully “Time Limit” in the first section of the Graduate Catalog, entitled “the Graduate School”. The student can register for evening courses as either a regular student or through the Evening School, but in all cases the Graduate School handles initial admission into the University.

If the student lacks a BS in Computer Engineering, Computer Science or Electrical Engineering, it is usually not practical to take undergraduate courses as a part-time student to become eligible for consideration in the MS program. This is because undergraduate courses are generally not available in the evenings and must be scheduled in proper sequence to satisfy prerequisite requirements.

It is usually not practical to pursue a PhD entirely as a part-time student (with exception of those with assistantships on campus), except perhaps for some coursework in the early stages. The part-time status is not generally compatible with the level of commitment and intensity of the program, especially in the qualifying examination participation, the dissertation research and the Graduate School’s residence requirement. However, anyone who is working at a research institution and highly qualified and motivated for the PhD should explore these possibilities with faculty in this department. A minimum recommendation is that his/her
employer should share the motivation and provide one of the letters of recommendation in support of the student’s application.

Computer Engineering Major, MS

Admission

Applicants for admission to the MS program for computer engineering are expected to have completed a bachelor's degree with an average of at least 3.0 out of 4.0, both overall and in the senior year. Applicants are required to submit scores from the general Graduate Record Examination (GRE) within the past three years and to have these scores sent to the Office of Graduate Admissions. A TOEFL score of 550 on the written exam or 80 on the Internet-based Test is required for non-native speakers of English, including those who have earned degrees at U.S. institutions. The score must be no more than two years old from the requested date of entry. Applicants who have received a degree from an accredited U.S. institution within the past two years are exempt from the TOEFL requirement. Applicants who hold the bachelor's degree in fields other than electrical or computer engineering will be required to take selected undergraduate courses as determined by the applicant’s prior education and experience. The student will be admitted under non-degree status until the required undergraduate courses are successfully completed with a 3.0 average. An international student may not enroll as a non-degree student.

Requirements

Students may choose between a thesis option, a non-thesis course-only option, and a non-thesis project option. All students must file a Master's Program Plan with the departmental graduate committee specifying which option they have selected, a semester-by-semester schedule of the courses they intend to take, and the members of the student’s master’s committee. Students may change between options one time by filing an amended Master's Program Plan and with approval of the departmental graduate committee. A student who receives financial support under a research assistantship is enrolled in the thesis option by default. Students who have held a research assistantship will require approval from the departmental graduate committee to change to one of the non-thesis options.

For all options, a total of 30 graduate credit hours are required. The course credits must satisfy

a. At least two-thirds of the total course hours must be at the 500-level or above.

b. A maximum of 6 graduate hours of courses outside the department may be applied toward the degree.
c. At least 6 hours selected from the following courses: ECE 551, ECE 553, ECE 554, ECE 555, ECE 556, COSC 530, ECE 571, ECE 572, ECE 651, ECE 653, ECE 657.

Thesis Option (30 hours)

1. 24 graduate hours of course credit.

2. A master's thesis (ECE 500), totaling a minimum of 6 hours is required, as well as a final oral exam covering the thesis and related course work.

Non-Thesis Project Option (30 hours)

1. 27 graduate hours of course credit. Of these hours, at least 3 must be in a third area of focus separate from those in (c), above.

2. ECE 501 (Project in Lieu of Thesis) with a minimum grade of B. This course will be administered by the student's master's committee. A written project proposal describing what the student will do in the course must be submitted in advance for the student's master's committee approval. A written final report and oral presentation is required, and one copy of the final draft must be submitted to the graduate committee.

Non-Thesis Courses Only Option (30 hours)

1. 30 graduate hours of course credit. Of these hours, at least 6 must be in a third area of focus separate from those in (c), above.

2. A final comprehensive written examination.

Computer Engineering Major, PhD

Admission

The PhD is offered with a major in computer engineering. Exceptional students holding the bachelor's degree may be admitted to the doctoral program without first obtaining a master's degree. Applicants are required to submit scores from the general Graduate Record Examination (GRE) within the past three years and to have these scores sent to the Office of Graduate Admissions. A TOEFL score of 550 on the written exam or 80 on the Internet-based Test is required for non-native speakers of English, including those who have earned degrees at U.S. institutions. The score must be no more than two years old from the requested date of entry. Applicants who have received a degree from an accredited U.S. institution within the past two years are exempt from the TOEFL requirement. Specific departmental requirements for the PhD include the following.
Requirements

Students holding only a BS degree must take a minimum of 72 total graduate credit hours, including a minimum of 39 graduate course credit hours. Students holding an MS degree in Electrical Engineering, Computer Engineering, or Computer Science from the University of Tennessee will be required to take a minimum of 48 total graduate credit hours, including at least 15 hours of graduate course credit beyond those applied to their MS degree. Students with MS degrees from other universities will be required to take a minimum of 48 total graduate credit hours, including at least 24 hours of graduate course credit. For all students, at least half of the course credits must be fulfilled by ECE or COSC courses at or above the 500 level. Course work requirements may not be fulfilled by research or dissertation credit or seminar courses. The student’s major professor, with the concurrence of the dissertation committee, will prepare a curriculum plan outlining precisely what courses will be taken.

For all students, the graduate course credit hours must additionally satisfy

a. A minimum of 9 hours of work must be ECE or COSC courses numbered at or above the 600 level.

b. For students holding an MS degree, a maximum of 6 hours at the 400-level may be applied toward the Ph.D. degree; other students may apply 12 hours at the 400 level (these 400-level courses must be listed in the Graduate Catalog for graduate credit).

Satisfactory performance on a qualifying examination. The qualifying examination consists of

a. A written critical review of current literature on a research topic approved by the administering faculty.

b. A presentation on the approved topic including an oral examination covering the topic and related fundamental knowledge.

c. A student must take the qualifying examination within twelve months of entering the Ph.D. program. A second and final attempt is allowed within 24 months of entering the Ph.D. program. Attendance of the examination is limited to the student and the administering faculty.

Satisfactory performance on a comprehensive examination administered by the student’s committee. The exam results are reported to the graduate committee for approval, and the exam is filed in the department. The comprehensive exam is given when the student is ready to apply for admission to candidacy. The comprehensive examination consists of both written and oral parts. The written part includes a complete review of the literature in the student’s dissertation topic, a review of the major tools to be used in the dissertation work, and proposed research. The student’s committee may require additional written sections. The student must demonstrate a mastery of the dissertation area, ability to
think analytically and creatively, skill in using academic resources, and ability to complete the
dissertation satisfactorily. The oral part of the comprehensive examination consists primarily of a
professional presentation of a proposal for dissertation work and its defense. The committee may
cover additional topics in the oral part.

Participation in departmental seminars.

A minimum of 24 hours of doctoral dissertation.

Successful public defense of the dissertation by the student. A minimum of 6 months must separate
the comprehensive examination and the dissertation defense.

Computer Science Major, MS

Admission

Applicants for admission to the MS program for computer science are expected to have completed a
bachelor’s degree with an average of at least 3.0 out of 4.0, both overall and in the senior year. Two
semesters of calculus plus two additional semesters of college mathematics (e.g. linear algebra,
differential equations, probability) and a course in formal languages, as well as in systems
programming, are required for admission. Applicants are required to submit scores from the general
Graduate Record Examination (GRE) within the past three years and to have these scores sent to the
Office of Graduate Admissions. A TOEFL score of 550 on the written exam or 80 on the Internet-

based Test is required for non-native speakers of English, including those who have earned degrees at
U.S. institutions. The score must be no more than two years old from the requested date of entry.

Applicants who have received a degree from an accredited U.S. institution within the past two years
are exempt from the TOEFL requirement. Applicants who hold the bachelor’s degree in fields other
than computer science will be required to take selected undergraduate courses as determined by the
applicant’s prior education and experience. The student will be admitted under non-degree status
until the required undergraduate courses are successfully completed with a 3.0 average. An
international student may not enroll as a non-degree student.

Requirements

Students may choose between a thesis option, a non-thesis course-only option, and a non-thesis
project option. All students must file a Master’s Program Plan with the departmental graduate
committee specifying which option they have selected, a semester-by-semester schedule of the courses
they intend to take, and the members of the student’s master’s committee. Students may change
between options one time by filing an amended Master’s Program Plan and with approval of the
departmental graduate committee. A student who receives financial support under a research
assistantship is enrolled in the thesis option by default. Students who have held a research
Assistantship will require approval from the departmental graduate committee to change to one of the non-thesis options.

For all options, a total of 30 graduate credit hours are required. The course credits must satisfy

a. At least two-thirds of the total course hours must be at the 500-level or above.

b. A maximum of 6 credit hours of courses outside the department may be applied toward the degree.

c. Students are required to complete COSC 530, COSC 560, and either COSC 580 or COSC 581.

Thesis Option (30 hours)

1. 24 semester hours of graduate credit.

2. A master's thesis totaling a minimum of 6 hours (COSC 500) is required, as well as a final oral exam covering the thesis and related course work.

Non-Thesis Project Option (30 hours)

1. 27 graduate hours of course credit. Of these hours, at least 3 must be in a third area of focus separate from those in (c), above.

2. COSC 501 (Project in Lieu of Thesis) with a minimum grade of B. This course will be administered by the student's master's committee. A written project proposal describing what the student will do in the course must be submitted in advance for the student's master's committee approval. A written final report and oral presentation is required and one copy of the final draft must be submitted to the graduate committee.

Non-Thesis Courses Only Option (30 hours)

1. 30 graduate hours of course credit. Of these hours, at least 6 must be in a third area of focus separate from those in (c), above.

2. The student must take course work in an area to prepare for the non-thesis master's examination. The student's advisor must verify that an acceptable set of courses has been taken before the student may schedule the examination.

Computer Science Major, PhD

Admission

The PhD is offered with a major in computer science. Exceptional students holding the bachelor's degree may be admitted to the doctoral program without first obtaining a master's degree. Applicants are required to submit scores from the general Graduate Record Examination (GRE) within the past three years and to have these scores sent to the Office of Graduate Admissions. A TOEFL score of 550
on the written exam or 80 on the Internet-based Test is required for non-native speakers of English, including those who have earned degrees at U.S. institutions. The score must be no more than two years old from the requested date of entry. Applicants who have received a degree from an accredited U.S. institution within the past two years are exempt from the TOEFL requirement. Applicants should satisfy the same background requirements as for the computer science master’s program.

Requirements

Students holding only a BS degree must take a minimum of 72 total graduate credit hours, including a minimum of 39 graduate course credit hours. Students holding an MS degree in Electrical Engineering, Computer Engineering, or Computer Science from the University of Tennessee will be required to take a minimum of 48 total graduate credit hours, including at least 15 hours of graduate course credit beyond those applied to their MS degree. Students with MS degrees from other universities will be required to take a minimum of 48 total graduate credit hours, including at least 24 hours of graduate course credit. For all students, at least half of the course credits must be fulfilled by COSC courses at or above the 500 level. Course work requirements may not be fulfilled by research or dissertation credit or seminar courses. The student’s major professor, with the concurrence of the dissertation committee, will prepare a curriculum plan outlining precisely what courses will be taken.

For all students, the graduate course credit hours must additionally satisfy:

a. A minimum of 6 hours of course work must be COSC or ECE courses numbered at the 600-level.

b. Courses COSC 530, COSC 560 and COSC 580 or COSC 581 passed with a grade of at least a B, are required for the degree.

c. For students holding an MS degree, a maximum of 6 hours at the 400-level may be applied toward the Ph.D. degree; other students may apply 12 hours at the 400 level (these 400-level courses must be listed in the Graduate Catalog for graduate credit).

Satisfactory performance on a comprehensive examination administered by the student’s committee. The exam results are reported to the graduate committee for approval and the exam is filed in the department. The comprehensive exam is given when the student is ready to apply for admission to candidacy. The comprehensive examination consists of both written and oral parts. The written part includes a complete review of the literature in the student's dissertation topic and a review of the major tools to be used in the dissertation work, and proposed research. The student's committee may require additional written sections. The student must demonstrate a mastery of the dissertation area, ability to think analytically and creatively, skill in using academic resources, and ability to complete the dissertation satisfactorily. The oral part of the comprehensive examination consists primarily of a
professional presentation of a proposal for dissertation work and its defense. The committee may cover additional topics in the oral part.

A minimum of 24 hours of doctoral dissertation.

Successful public defense of the dissertation by the student. A minimum of 6 months must separate the comprehensive examination and the dissertation defense.

Electrical Engineering Major, MS

Admission

Applicants for admission to the MS program for electrical engineering are expected to have completed a bachelor's degree with an average of at least 3.0 out of 4.0, both overall and in the senior year. Applicants are required to submit scores from the general Graduate Record Examination (GRE) within the past three years and to have these scores sent to the Office of Graduate Admissions. A TOEFL score of 550 on the written exam or 80 on the Internet-based Test is required for non-native speakers of English, including those who have earned degrees at U.S. institutions. The score must be no more than two years old from the requested date of entry. Applicants who have received a degree from an accredited U.S. institution within the past two years are exempt from the TOEFL requirement. Applicants who hold the bachelor's degree in fields other than electrical or computer engineering will be required to take selected undergraduate courses as determined by the applicant’s prior education and experience. The student will be admitted under non-degree status until the required undergraduate courses are successfully completed with a 3.0 average. An international student may not enroll as a non-degree student.

Requirements

Students may choose between a thesis option, a non-thesis course-only option, and a non-thesis project option. All students must file a Master's Program Plan with the departmental graduate committee specifying which option they have selected, a semester-by-semester schedule of the courses they intend to take, and the members of the student's master's committee. Students may change between options one time by filing an amended Master's Program Plan and with approval of the departmental graduate committee. A student who receives financial support under a research assistantship is enrolled in the thesis option by default. Students who have held a research assistantship will require approval from the departmental graduate committee to change to one of the non-thesis options.
For all options, a total of 30 graduate credit hours are required. The course credits must satisfy

a. At least two-thirds of the total course hours must be at the 500-level or above.

b. A maximum of 6 graduate hours of courses outside of the department may be applied toward the degree.

c. At least 6 graduate hours must be in each of two separate areas of focus in electrical engineering and computer engineering.

Thesis Option (30 hours)

1. 24 graduate semester hours of course credit.

2. A master's thesis (ECE 500), totaling 6 hours is required, as well as a final oral exam covering the thesis and related course work.

Non-Thesis Project Option (30 hours)

1. 27 graduate hours of course credit. Of these hours, at least 3 must be in a third area of focus separate from those in (c), above.

2. ECE 501 (Project in Lieu of Thesis) with a minimum grade of B. This course will be administered by the student's master's committee. A written project proposal describing what the student will do in the course must be submitted in advance for the student's master's committee approval. A written final report and oral presentation is required, and one copy of the final draft must be submitted to the graduate committee.

Non-Thesis Courses Only Option (30 hours)

1. 30 graduate hours of course credit. Of these hours, at least 6 must be in a third area of focus separate from those in (c), above.

2. A final comprehensive written examination.

Electrical Engineering Major, PhD

Admission

The PhD is offered with a major in electrical engineering. Exceptional students holding the bachelor's degree may be admitted to the doctoral program without first obtaining a master's degree. Applicants are required to submit scores from the general Graduate Record
Examination (GRE) within the past three years and to have these scores sent to the Office of Graduate Admissions. A TOEFL score of 550 on the written exam or 80 on the Internet-based Test is required for non-native speakers of English, including those who have earned degrees at U.S. institutions. The score must be no more than two years old from the requested date of entry. Applicants who have received a degree from an accredited U.S. institution within the past two years are exempt from the TOEFL requirement. Specific departmental requirements for the PhD include the following.

Requirements

Students holding only a BS degree must take a minimum of 72 total graduate credit hours, including a minimum of 39 graduate course credit hours. Students holding an MS degree in Electrical Engineering, Computer Engineering, or Computer Science from the University of Tennessee will be required to take a minimum of 48 total graduate credit hours, including at least 15 hours of graduate course credit beyond those applied to their MS degree. Students with MS degrees from other universities will be required to take a minimum of 48 total graduate credit hours, including at least 24 hours of graduate course credit. For all students, at least half of the course credits must be fulfilled by ECE courses at or above the 500 level. Course work requirements may not be fulfilled by research or dissertation credit or seminar courses. The student’s major professor, with the concurrence of the dissertation committee, will prepare a curriculum plan outlining precisely what courses will be taken.

For all students, the graduate course credit hours must additionally satisfy

a. A minimum of 9 hours of work must be ECE courses numbered at or above the 600 level.

b. For students holding an MS degree, a maximum of 6 hours at the 400-level may be applied toward the Ph.D. degree; other students may apply 12 hours at the 400 level (these 400-level courses must be listed in the Graduate Catalog for graduate credit).

Satisfactory performance on a qualifying examination. The qualifying examination consists of

a. A written critical review of current literature on a research topic approved by the administering faculty.

b. A presentation on the approved topic including an oral examination covering the topic and related fundamental knowledge.

c. A student must take the qualifying examination within twelve months of entering the Ph.D. program. A second and final attempt is allowed within 24 months of entering the Ph.D. program. Attendance of the examination is limited to the student and the administering faculty.

Satisfactory performance on a comprehensive examination administered by the student’s committee. The exam results are reported to the graduate committee for approval, and the exam is filed in the department. The comprehensive exam is given when the student is ready to apply
for admission to candidacy. The comprehensive examination consists of both written and oral parts. The written part includes a complete review of the literature in the student's dissertation topic, a review of the major tools to be used in the dissertation work, and proposed research. The student's committee may require additional written sections. The student must demonstrate a mastery of the dissertation area, ability to think analytically and creatively, skill in using academic resources, and ability to complete the dissertation satisfactorily. The oral part of the comprehensive examination consists primarily of a professional presentation of a proposal for dissertation work and its defense. The committee may cover additional topics in the oral part.

Participation in departmental seminars.

A minimum of 24 hours of doctoral dissertation.

Successful public defense of the dissertation by the student. A minimum of 6 months must separate the comprehensive examination and the dissertation defense.

Energy Science and Engineering Concentration

This concentration is offered in collaboration with the Center for Interdisciplinary Research and Graduate Education (CIRE). The CIRE is a joint effort between the College of Engineering, other University of Tennessee colleges, and the Oak Ridge National Laboratory. The students who wish to pursue this concentration will normally have completed 6 Core credit hours, 3 credit hours of Knowledge Breadth, and 6 credit hours of Knowledge Specialization coursework (minimum 15 hours) specified under the Energy Science and Engineering major, (PhD) program section of the catalog.

Five-Year BS / MS Program

The five-year BS/MS program is designed to allow qualifying students to take up to six hours of approved graduate courses for their senior undergraduate electives and have them count toward both their bachelor's and master's degrees at the University of Tennessee, thus reducing the amount of time it takes for a student to earn a master's degree.

Admission: Students must be in the process of completing or already having completed 96 hours of required undergraduate course work. They are also required to have an overall UT GPA of 3.4 or better when applying. Interested and qualified students need to fill out the Admission/Course Approval Form and have it approved by Dr. Gregor, EECS Graduate Program Director. The form is then returned to Ms. Julia Elkins at 401 Min H. Kao Building who forwards it for approval by the College of Engineering and the Graduate School.
Course Approval: All courses taken for graduate credit must be approved by the EECS Graduate Program Director. The list includes all 4xx/5xx ECE and COSC courses. However, 4xx courses will be approved only if the corresponding 5xx course is not offered in the same semester. Course approval can only be given for courses that have been scheduled. Students who take 3 hrs one semester followed by 3 hrs another semester must consequently submit an Admission/Course Approval Form for each semester. Approval will not be given retroactively. Students MUST obtain approval prior to taking a course.

DARS: Approved courses will appear in DARS under “MASTERS PROGRAM”. Once the B.S. degree has been conferred, approved courses are automatically transferred to the M.S. degree by the Graduate School.

Senior Requesting Graduate Credit Petition: Students who wish to take an additional 3 hrs of graduate course work their senior year should file this form (see the Graduate School webpage at http://gradschool.utk.edu/gradforms.shtml). This form is not needed for the 6 hrs approved for the Five-year BS/MS program.

Applying to Graduate School: Students admitted to the Five-year BS/MS program must follow the normal procedure for admission to Graduate School. This includes having to take the GRE, filing an application complete with references, etc. However, students are not required to apply for or accept admission to the EECS Graduate Program in order for the course credits to count toward the B.S. degree.

Dual MS-MBA

Curriculum for Dual MS-MBA Program – Computer Engineering

Fall - First Year

<table>
<thead>
<tr>
<th>Session 1: 7 1/2 weeks</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 505 - Financial Accounting I</td>
<td>1.5</td>
</tr>
<tr>
<td>MGT 506 - Competitive Strategy</td>
<td>1.5</td>
</tr>
<tr>
<td>STAT 505 - Quantitative Methods</td>
<td>1.5</td>
</tr>
<tr>
<td>MARK 505 - Marketing and Demand Management I</td>
<td>1.5</td>
</tr>
<tr>
<td>BUAD 515 - Business Skills Development</td>
<td>1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 2: 7 1/2 weeks</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 506 - Managerial Accounting I</td>
<td>1.5</td>
</tr>
<tr>
<td>FINC 505 - Financial Management I</td>
<td>1.5</td>
</tr>
<tr>
<td>MARK 506 - Marketing and Demand Management II</td>
<td>1.5</td>
</tr>
<tr>
<td>ECON 505 - Economics of Strategy</td>
<td>1.5</td>
</tr>
<tr>
<td>BUAD 516 - Business Skills Development II</td>
<td>1.5</td>
</tr>
<tr>
<td>Total fall hours</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Spring - First Year

<table>
<thead>
<tr>
<th>1Engineering Major course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 1: 7 1/2 weeks</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 505 - Leading Complex Organizations</td>
<td>1.5</td>
</tr>
<tr>
<td>SCM 505 - Supply Chain Management I: Strategic Issues in Supply Side</td>
<td>1.5</td>
</tr>
<tr>
<td>Supply Chain Management</td>
<td>1.5</td>
</tr>
<tr>
<td>BZAN 505 - Operations Management</td>
<td>1.5</td>
</tr>
</tbody>
</table>
BZAN 506 Prescriptive Modeling 1.5
BUAD 517 - Business Skills Development III 1.5

Session 2: 7 1/2 weeks

SCM 506 - Supply Chain Management II: Strategic Issues in Demand Side 1.5

Supply Chain Management 1.5
FINC 506 - Financial Management II 1.5
BULW 505 - Foundations of Business Law and Ethics 1.5
ECON 506 - Market Forces in Global Environment 1.5
BUAD 518 - Innovation in Practice 1.5
Total spring hours 18.0

Summer - First Year

1Electrical Engineering Major course / Mathematics course 6.0
Total summer hours 6.0

Fall - Second Year

1Electrical Engineering Major courses 6-9
MBA Electives (Entrepreneurship and Innovation preferred) 6-9
Total fall hours 12-15

Spring - Second Year

1Electrical Engineering Major courses / Mathematics courses 9.0
Total spring hours 9.0
Total hours required for dual program 60.0

1 The engineering courses selected must satisfy the degree requirements for the Electrical Engineering major.

Curriculum for Dual MS-MBA Program – Computer Science

Fall - First Year

Session 1: 7 1/2 weeks
ACCT 505 - Financial Accounting I 1.5
MGT 506 - Competitive Strategy 1.5
STAT 505 - Quantitative Methods 1.5
MARK 505 - Marketing and Demand Management I 1.5
BUAD 515 - Business Skills Development I 1.5

Session 2: 7 1/2 weeks
ACCT 506 - Managerial Accounting I 1.5
FINC 505 - Financial Management I 1.5
MARK 506 - Marketing and Demand Management II 1.5
ECON 505 - Economics of Strategy 1.5
BUAD 516 - Business Skills Development II 1.5
Total fall hours 15.0

Spring - First Year
Computer Science course

Session 1: 7 1/2 weeks
- MGT 505 - Leading Complex Organizations 1.5
- SCM 505 - Supply Chain Management I: Strategic Issues in Supply Side 1.5
- BZAN 505 - Operations Management 1.5
- BZAN 506 - Prescriptive Modeling 1.5
- BUAD 517 - Business Skills Development III 1.5

Session 2: 7 1/2 weeks
- SCM 506 - Supply Chain Management II: Strategic Issues in Demand Side 1.5
- FINC 506 - Financial Management II 1.5
- BULW 505 - Foundations of Business Law and Ethics 1.5
- ECON 506 - Market Forces in Global Environment 1.5
- BUAD 518 - Innovation in Practice 1.5

Total spring hours 18.0

Summer - First Year

1 Computer Science course(s) / Mathematics course(s) 6.0
Total summer hours 6.0

Fall - Second Year

1 Computer Science courses 6-9
MBA Electives (Entrepreneurship and Innovation preferred) 6-9
Total fall hours 12-15

Spring - Second Year

1 Computer Science courses 9.0
Total spring hours 9.0
Total hours required for dual program 60.0

1 The Computer Science courses taken for the dual MS-MBA degree must include Computer Science COSC 530, COSC 560, and either COSC 580 COSC 581.

Curriculum for Dual MS-MBA Program – Electrical Engineering

Fall - First Year

Session 1: 7 1/2 weeks
- ACCT 505 - Financial Accounting I 1.5
- MGT 506 - Competitive Strategy 1.5
- STAT 505 - Quantitative Methods 1.5
- MARK 505 - Marketing and Demand Management I 1.5
- BUAD 515 - Business Skills Development 1.5

Session 2: 7 1/2 weeks
- ACCT 506 - Managerial Accounting I 1.5
FINC 505 - Financial Management I 1.5
MARK 506 - Marketing and Demand Management II 1.5
ECON 505 - Economics of Strategy 1.5
BUAD 516 - Business Skills Development II 1.5
Total fall hours 15.0

Spring - First Year

1 Engineering Major course 3.0
Session 1: 7 1/2 weeks
MGT 505 - Leading Complex Organizations 1.5
SCM 505 - Supply Chain Management I: Strategic Issues in Supply Side 1.5
Supply Chain Management 1.5
BZAN 505 - Operations Management 1.5
BZAN 506 - Prescriptive Modeling 1.5
BUAD 517 - Business Skills Development III 1.5
Session 2: 7 1/2 weeks
SCM 506 - Supply Chain Management II: Strategic Issues in Demand Side 1.5
Supply Chain Management 1.5
FINC 506 - Financial Management II 1.5
BULW 505 - Foundations of Business Law and Ethics 1.5
ECON 506 - Market Forces in Global Environment 1.5
BUAD 518 - Innovation in Practice 1.5
Total spring hours 18.0

Summer - First Year

1 Electrical Engineering Major course / Mathematics course 6.0
Total summer hours 6.0

Fall - Second Year

1 Electrical Engineering Major courses 6-9
MBA Electives (Entrepreneurship and Innovation preferred) 6-9
Total fall hours 12-15

Spring - Second Year

1 Electrical Engineering Major courses / Mathematics courses 9.0
Total spring hours 9.0
Total hours required for dual program 60.0

1 The engineering courses selected must satisfy the degree requirements for the Electrical Engineering major.

Examinations
• Types and nature for master’s, specialist, and doctoral degrees: proficiency, diagnostic, qualifying, foreign language, comprehensive, defense of thesis/dissertation
• Administration procedure and grading
• Clear policy determined by department faculty vote on number of failures allowed before termination from program
• Termination process and communication with student including process of appeal within the department and route of appeal following department decision

Standards, Problems, and Appeals

• Required grade point average for continuation in program; results of failure of required coursework; academic triggers for dismissal (for example, two C’s in required coursework)
• Frequency of evaluation and other requirements for good standing; procedure for determining satisfactory progress (for instance, annual review by faculty committee)
• Procedure for removal of incompletes
• Adequate progress toward degree
• Compliance with legal requirements for research (departmental and university Institutional Review Boards (IRB))
• Terms of probation (e.g. if GPA falls below 3.0)
• Academic honesty: expectations, violations, penalties
• Conditions resulting in termination from the program
• Department appeals processes, including time limits for appeals
• University appeals procedure (http://gradschool.utk.edu)

The Honor Code

You are expected to adhere to the honor code in all matters, which is provided below:

“An essential feature of The University of Tennessee is a commitment to maintaining an atmosphere of intellectual integrity and academic honesty. As a student of the University, I pledge that I will neither knowingly give nor receive any inappropriate assistance in academic work, thus affirming my own personal commitment to honor and integrity.”

Appeals

Most graduate student grievances are resolved at the Departmental or College level. For appeals about academic matters, you should usually appeal first to the Departmental Graduate Committee. Further appeals would be directed to the faculty. For appeals about other matters, contact the Department Graduate Program Director or the Department Head.

If the appeal is not resolved at the Departmental level, you should confer with the Dean of Engineering and the Dean of the Graduate School. If that fails to resolve the matter, you may then initiate the Graduate Council appeal procedure. That will be heard by five faculty members drawn from the Graduate Council Appeals Committee. The outline of this procedure can be obtained from the Graduate School.

Ultimately, students have the right to appeal to the Provost and to the President of the University.
Appendices

Pertinent Graduate Student Web Pages

• Best Practices in Teaching
 http://gradschool.utk.edu/2016/08/12/best-practices-in-teaching-program/

• International Student and Scholar Services
 http://international.utk.edu/

• Counseling Center
 http://counselingcenter.utk.edu/

• Department & College Funding, Fellowships, Assistantships for Grad Students
 http://gradschool.utk.edu/graduate-student-life/costs-funding/

• Graduate School
 http://gradschool.utk.edu

• Graduate Catalog
 http://catalog.utk.edu/index.php

• Graduate Student Appeals Procedure

• Graduate Student Senate
 http://gss.utk.edu/

• Graduate and International Admissions
 http://gradschool.utk.edu/admissions/

• International House
 http://ihouse.utk.edu/

• Student Conduct and Community Standards
 http://studentconduct.utk.edu/

• Office of Equity and Diversity
 http://oed.utk.edu

• Multicultural Student Life/Black Cultural Center
 http://multicultural.utk.edu

• Research Compliance/Research with Human Subjects
 http://research.utk.edu/compliance/

• International Teaching Assistant (ITA) Testing Program (Formerly the SPEAK® Testing Program)
 http://gradschool.utk.edu/graduate-student-life/ita-testing-program/

• Thesis/Dissertation Website
 http://gradschool.utk.edu/thesesdissertations/

• Library Website for Graduate Students
 http://libguides.utk.edu/graduate

• OIT
 http://oit.utk.edu/

Forms and Additional Resources

Graduate Admissions Forms
The Graduate Admissions Forms must be submitted to the Office of Graduate Admissions (865-974-3251), located in 201 Student Services Building.

General Graduate Student Forms
 • Change of Registration Form (Add/Drop Slip)
 • Late Change of Registration Form
 • Senior Requesting Graduate Credit
 • Certification of Degree Completion Letter Request PDF
 • Request for Time Extension Form
 • Thesis/Dissertation Approval Form
• Request for Concurrent Master’s Degree Form PDF

Graduation Forms
All the forms are in interactive PDF. Refer to the instructions at the bottom. Always consult with your admissions specialist on your specific requirements.

Graduate student deadline dates

Master's Student Forms
• Admission to Candidacy Application*
 • Revision to Master's and Ed.S. Candidacy Application
• Graduation Application: found on MyUTK / "Student Records" / "Apply to Graduate"
• Report of Final Exam/Defense of Thesis (Pass/Fail) Form*

Doctoral Student Forms
• Admission to Candidacy Application*
• Doctoral Committee Appointment Form*
• Graduation Application: found on MyUTK / "Student Records" / "Apply to Graduate"
• Report of Final Exam/Defense of Dissertation (Pass/Fail) Form* - Committee Chair receives form from Graduation Specialist
• Scheduling Defense of Dissertation Form*
• Survey of Earned Doctorates (SED) Web Registration. More about SED Registration.

These forms can be downloaded at http://gradschool.utk.edu/forms-central/